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Abstract

This paper introduces a simulation-based adaptive algorithm to solve a DSGE model

with a large state space, namely the curse of dimensionality. It aims to generate a sta-

tionary distribution over policy space which is concentrated on the optimal policy. The key

strategy is to construct a finite policy space of heuristic policies. To update the distribution

over policy space, the method adopts on-line computation via iterative simulation with em-

phasis on rolling-horizon control to foster the speed of algorithm. Subsequently, I deliver

that the algorithm achieves theoretical convergence to the optimal value function and the

stationary distribution over policy space is concentrated on the optimal policy. Application

to solve the simple two-period RBC model follows as a sample exercise. The result shows

the performance is desirable within the feasible number of iterations and size of restricted

policy space respectively.

∗Department of Economics, Indiana University Bloomington, sk86@iu.edu; I am indebted to my advisor, Todd
Walker for much advice and guidance at all stages of this project. I also thank Bulent Guler and seminar partici-
pants at the Jordan River Economics Conference Indiana University. All remaining errors are my own.
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1 Introduction

This paper introduces a simulation-based solution method for a Dynamic Stochastic General

Equilibrium (DSGE) model to overcome the curse of dimensionality. The curse of dimension-

ality in macroeconomics refers a case in which a large state space precludes a macroeconomics

model from computing its solution and estimation. Because the computational load grows ex-

ponentially for each additional state variable. This implies that solution method like value

function iteration which constructs state space grids by tensor product cannot escape from the

curse.

To deal with this issue, the new method switches the order of numerical solution steps,

which is called as on-line computation in computational science literature(Chang et al., 2013).

For example, value function and policy function iteration methods pre-compute policies for

all states and then select one of the stored policies by observing a realized state. On the

other hand, on-line computation first observes a state realized and then computes the best

action(policy) to be taken. It unloads the computational burdens significantly because it only

accounts for the single observed state on-line at the decision time.

The new algorithm of this paper differs not only from the mainstream of numerical solu-

tion techniques like perturbation and projection method, but also from the existing stochastic

simulation method in the field. To begin with, perturbation method approximates the solution

with the Taylor expansion. It provides tractable local solutions of the model with high dimen-

sion. Hence it is not a valid option for models with occasionally binding constraints. Projection

method shares a very similar spirit with OLS regression. It projects the global solution on a

set of function basis to minimize the residual of first order conditions. It has many advantages

yet it needs to discretize the state space, meaning that the method is exposed to the large state

space issue. Consequently the two popular methods are not suitable to the model which car-

ries a large state space and occasionally binding constraints at the same time. In this context,

the class of stochastic simulation methods have arisen to address the state space of a model

effectively. The existing stochastic simulation methods focus on reducing the size of a state

space1. On the other hand, I suggest a simulation method which searches for the optimal pol-

icy via on-line computation with restricted policy space. It is labeled as Simulated Annealing

Multiplicative Weighting (SAMW) algorithm by Chang et al. (2013).

1Judd et al. (2011) and Maliar and Maliar (2015) review the class of the stochastic simulation methods.
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The key concept of the SAMW algorithm is the policy space. The main task of SAMW is

to sequentially evaluate the performance of each policy elements in the space. However it

does not indicate that the evaluation should be done for all states. The idea of simulation

is to compute the optimal value in terms of sample analog of the true structure. Because a

sufficient number of random simulations will effectively cover the state space in Monte Carlo

fashion. Therefore if one could afford a pertinent policy space, the size of a state space would

be no longer a problem in running-time complexity perspective.

The SAMW algorithm has a clear structure for improvement in terms of accuracy and

robustness compared to other stochastic simulation methods. Because it is associated with

theories which provide convergence of the performance along with its formal evaluation. One

of the theorems characterizes the error bound between the approximate of the value function

and the optimal value function by the length of the horizon of the model and the discount

rate. The other theorem states that the sequence of policy distribution generated by SAMW

algorithm converges to a stationary distribution. Subsequently, it concludes that SAMW algo-

rithm is asymptotically efficient(fastest); The algorithm provides a finite-time upper bound for

the sample mean of an optimal policy which converges to the optimal value function(Chang

et al., 2013).

The final objective of this project is to implement the new algorithm to solve and estimate

the macroeconomics model at the frontier, the model with a large state space and or occasion-

ally binding constraints. As a first step, this paper explores the SAMW algorithm through

the simple two-period Real Business Cycle (RBC) model. Through the exercise, I report the

performance of the method compared to analytic solution. Though parsimonious, the practice

marks some notable results of the new methodology. First, the policy distribution success-

fully converges to a stationary distribution concentrated on the optimal policy as the theory

predicted. Secondly the performance is robust to both the construction of policy space and

iteration number of simulation.

The paper is organized as follows: In section 2, a generic RBC model is elaborated as a

case of a MDP. The main algorithm is presented in section 3 and the application of it follows

in section 4. Section 5 concludes. Technical details are provided in Appendix. I indicate that

the Section 2 and 3 refer to the basis of Chang et al. (2013).
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2 Generalizing RBC Model to Markov Decision Process

To apply the SAMW algorithm as a solution method, we need to generalize a RBC model to a

form of Markov Decision Process(MDP). A MDP is defined by five-tuple (X,A,A(·), P,R). For

a detailed description, let’s match each component of MDP to that of a simple RBC model with

T > 1 periods as follows,

max E0

T−1∑
t=0

βtu(ct)

s.t. ct + kt+1 = Atf(kt) + (1− δ)kt (1)

At ∼ a Markov process (2)

k0 is given (3)

where u(·) is an utility function and f(·) is a production function. ct, kt andAt are consumption,

capital stocks and total factor productivity at period t = 0, . . . , T−1 respectively. The parameter

β ∈ (0, 1) is a time discount rate, α ∈ (0, 1) is the usual parameter of capital in Cobb-Douglas

production function, and δ ∈ [0, 1] is a depreciation rate of capital.

The first component X is a state space of states x ∈ X. For the example model, a state

is denoted as x = (k,A) or xt = (kt, At) for all time period t = 0, · · · , T − 1. Secondly, A

is an action space. Its element a ∈ A is an action or a control variable in terms of dynamic

programming. The agent of this simple RBC model decides her consumption and capital stocks

to hold for each period, i.e. at = (ct, kt+1). We can replace one between ct and kt+1 with resource

constraint (1). In fact, setting at = kt+1 as an action for period t is convenient to describe an

admissible action space. An admissible action space A(x) is a subset of action space which

collects admissible actions at the given state x ∈ X. By admissibility, it means that an action

satisfies constraints of a model. Therefore the admissible action space for the example model

becomesA(xt) = [0, Atf(kt)+(1−δ)kt] for period t2. Next, P is a probability of state transition.

P (x, a)(x′) denotes the probability of transitioning from a state x ∈ X to another state x′ ∈ X

when taking an action a ∈ A. A Markov matrix is an equivalent transition function familiar

to the macroeconomics literature. Lastly, R is a reward function of a state and action. An

utility function u(x, a) directly maps an instant reward from the current state x and the given

2Thus at period t, the capital stock of current period kt is a state and the next period stock kt+1 is an action.
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action a. An utility function u(c) can be rewritten with the resource constraint (1) as u(x, a) =

u((k,A), k′) = u(Af(k) + (1 − δ)k − k′). Therefore, replacing ct with the budget constraint (1)

gives

max E0

T−1∑
t=0

βtu
(
Atf(kt) + (1− δ)kt − kt+1

)
s.t. At ∼ some stochastic(Markov) process (4)

k0 is given (5)

Solving a DSGE model is to answer the following question; what should we do in a given

situation? In other words, it is to find a certain policy π = {πt}T−1
t=0 , a time-sequence of actions

to take for each given state. Such policy at t is a function of states which maps all states to the

admissible action, i.e. πt : X → A(·). The optimal policy π∗ is defined as the policy maximizing

present value of expected utility subject to given constraints of a model. Applying the concept of

a policy allows us to represent a MDP with respect to state x. Dynamic programming develops

this idea and describes a MDP as a system of state, widely known as value function with a

given policy π,

V π(x) = E
[ T−1∑
t=0

βtR(xt, πt(xt))

∣∣∣∣x0 = x

]

with a given initial state x0 and a discount rate β ∈ (0, 1).

A DSGE model can always be redefined as a MDP. The state space, action space, transition

function and reward function are well defined in a DSGE model already. The admissible action

space here is the action space incorporated with constraints of a DSGE model. Define a policy

function as kt+1 = πt(kt, At), then we can fit the sample RBC model into the value function for

policy π as above,

V π(k,A) = E
[ T−1∑
t=0

βtu
(
Atf(kt) + (1− δ)kt − πt(kt, At)

)∣∣∣∣(k0, A0) = (k,A)

]
(6)

To simplify the notation, let’s denote state xt = (kt, At), action at = kt+1, the reward function

combined with constraint u(xt, at) = u
(
Atf(kt) + (1− δ)kt − at

)
and u(xt, πt(xt)) = u

(
Atf(kt) +
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(1− δ)kt − πt(kt, At)
)

from now on. Then we can rewrite the value function of policy π,

V π(x) = E
[ T−1∑
t=0

βtu(xt, πt(xt))

∣∣∣∣x0 = x

]
(7)

After transforming a DSGE model into the value function representation, we can define

the optimal value function,

V ∗(x) = sup
π∈Π

V π(x) (8)

where Π is a set of policies π = {πt}T−1
t=0 . It is familiar to write a value function for a policy π

for all x ∈ X recursively as

V π(x) =u(x, π(x)) + β
∑
x′∈X

P (x, π(x))(x′)V π(x′) (9)

V π(x) =u(x, π(x)) + βE[V π(x′)|x] (10)

and the optimal value function for all x ∈ X as

V ∗(x) = sup
a∈A(x)

{
u(x, a) + β

∑
x′∈X

P (x, a)(x′)V ∗(x′)
}

(11)

V ∗(x) = sup
a∈A(x)

{
u(x, a) + βE[V ∗(x′)|x]

}
(12)

Note that the value function is a function of state x, not of policy π. It implies that a value

function merely gives a measure to evaluate the given policy π but a direction of improvement

of policy. To solve for π∗, we need to derive the optimality conditions from the first order

conditions and envelop theorem. Unfortunately such analytic approach is hardly available in

most DSGE models due to their complexity. In this regard, several numerical methods have

been developed to exploit the properties of a value function and its associated optimal policy.

3 Simulated Annealing Multiplicative Weights Algorithm

To undermine the curse of dimensionality the class of stochastic simulation methods has been

established to address the state space of a model effectively. Generally they have focused on

deweighting the state space by computing only in the part of the state space which is visited in

6



Seokil Kang: SAMW Algorithm for solving a DSGE Model

equilibrium(Chang et al., 2013, Judd et al., 2011). On the other hand, I suggest a simulation

method called SAMW which searches for the optimal policy via on-line computation with re-

stricted policy space. This section is followed by the mechanism description of the algorithm.

First, section 3.1 categorizes a simulation method as an one-line computation, a concept from

the control theory literature. It supports the idea that the simulation method can treat a large

state space in feasible manner. Section 3.2 introduces rolling-horizon control also known as

model predictive control. It is the main strategy of the algorithm to track the optimal policy

for a MDP with infinite horizon. Finally 3.3 walks through the SAMW algorithm in details.

3.1 On-line Simulation-Based Control The usual solution method to compute the optimal

value function V ∗ is value function iteration. It starts with an initial guess V (0) to feed in and

then searches for an optimal a ∈ A(x). It iterates ‘feed-in and search’ until V (i) converges to

V (i+1) for all state x ∈ X. Naturally it is vulnerable to the size of the state space X. Policy

function iteration consists of two subroutines: policy evaluation and policy improvement. For

any policy π ∈ Π, one can compute a value function by solving (9) for fixed point function V π

over all x ∈ X. That is, there are |X| number of linear equations for the same number of

unknowns, V π(x). Next, policy improvement attains a new policy π̂ by

π̂(x) ∈ arg sup
a∈A(x)

{
u(x, a) + β

∑
x′∈X

P (x, a)(x′)V π(x′)
}

(13)

and these two steps iterate until V π converges to V π̂.

Both iterative methods impose computation over the whole state space X. Inevitably their

running-time complexity heavily depends on the state space size for both cases3. In the con-

trol theory literature, there are two methods of computation, off-line and on-line computa-

tion(Chang et al., 2013). Policy iteration and value function iteration are the examples of

off-line computation. They compute each policies for all state points in the state grid and then

select an optimal policy after the realization of a certain state. This is computationally heavy

as the number of state increases in exponential manner-the curse of dimensionality.

On-line computation reverses this step. It first let the system of interest reaches a certain

state and then compute the optimal policy. A simulation method conducts on-line computation

3Chang et al. (2013) demonstrates the running-time complexity of these iteration methods. Each single iteration’s
time complexity isO(|X|2|A|) for value function iteration andO(|X|2|A|+ |X|3) for policy function iteration. Note
that the curse of dimension arises in the tensor product of a state space X.
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by generating the stochastic process of a MDP. It can bring up a sample path of state of a

model through a number of simulation seeds {wit}T−1
t=0 for i = 1, . . . , N . Let’s take the simple

T period RBC model as an illustration example. One can easily generate the series of total

factor productivity process {At}T−1
t=0 based on the given model (2). This suffices for computing

a sample path of value function for policy π. That is, we only need to compute for the realized

state, not for the whole state space. This idea turns our task to find a computation method

of which finite sample paths sufficiently covers the given state space instead of enumerating

a state space. Suppose that there exists a finitely large iteration number of simulation N

such that sufficiently covers all possible histories of stochastic evolution of the system. Then

the sample paths produced by such simulation will be a proper sample analog to estimate the

value function (7),

V̂ π(x) =
1

N

N∑
i=1

( T−1∑
t=0

βtu(x, π(x))
∣∣x0 = x, {wt}T−1

t=0

)
V̂ π(x) →

N→∞
V π(x)

The beauty of a simulation method is embedded in switching the order of maximization and

expectation operator of a dynamic programming. For the original problem (10), it requires to

derive the maximum of the expectation operator term conditional on state x ∈ X. Thus we

have to compute max{E[V (x′)|x]} either analytically or numerically for all states in X. Mean-

while a simulation method seeks a way to approximate such objective by switching the order

of operators to E[max{u(x, a)+V (x′)}|x]. It is a more desirable case because it does not employ

any maximization routine, a main culprit of both running-time complexity and instability in

most cases. In particular, the SAMW algorithm omits a maximization routine but only gen-

erates a sequence of weight distribution over the policy space. It reaches the optimal policy

and value function by simply updating the weight of each policy over the policy space through

iterative simulations.

3.2 Rolling-Horizon Control A simulation method is not directly applicable for solving a

DSGE model with infinite-horizon since there is no final period to terminate the process. As a

result, approximating an infinite-horizon model to a finite-horizon version is necessary to solve

it through a simulation method. It is true that the longer the horizon of the model is, the better

it approximates. However it is not necessarily a good idea to make the horizon of the model
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as long as possible. Because this comes with a cost of computational load by construction.

Hence we need to settle the trade-off between accurate approximation and computational cost

formally.

Such approximation framework is known as rolling-horizon control from control theory lit-

erature(Chang et al., 2013). It demonstrates a theoretical error bound between the stationary

solution of infinite-horizon model and the optimal initial policy of truncated model, parame-

terized by the horizon length and discount rate4. Intuitively with sufficiently long horizon and

small discount rate, the stationarity of infinite horizon model can be estimated relatively well

by the early part of truncated model. That is, the nonstationary optimal policy of the initial

period becomes a good approximate of the original solution because the error bound diminishes

as the horizon gets longer given a discount rate lower than one.

This allows us to focus on the policy function of the initial period as we are going to roll

over the horizon. Suppose that we were able to extend the horizon of the model to a fairly long

period, say T periods. Then we get T nonstationary optimal policy functions, {π∗t }T−1
t=0 . Chang

et al. (2013) shows that this length T model’s policy function of initial period would become

the approximate of the stationary policy function of the infinite horizon. The rationale behind

is that once the agent plans for T period ahead, after a period later, she can restart her plan

again. In this way, only the initial period policy will be applied repeatedly and it eventually

becomes the stationary solution of the model. This stationarity is very beneficial because

keeping the simulation’s framework constantly can save a great computational expense. The

matter is that the agent should not be worse off too much from truncating her plan up to T

period. Therefore we can infer that the approximation would depend on T and the discount

rate β.

To denote of the dependency of value function on finite horizon T , let’s rewrite (7) as

V π
T (x) = E

[ T−1∑
t=0

βtu(xt, πt(xt))

∣∣∣∣x0 = x

]
(14)

and the optimal value function as

V ∗T (x) = sup
π∈Π

V π
T (x) (15)

4This is not an alien concept for the dynamic macroeconomics because the transversality condition of infinite-
horizon model has been taking this role already.
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In addition, let B(X) be the space of bounded real-valued functions on X. For Φ ∈ B(X),

x ∈ X, define an operator T : B(X)→ B(X) by

T (Φ)(x) = sup
a∈A(x)

{u(x, a) + E[Φ(x′)|x]} (16)

Then we can define a rolling-T-horizon control policy πrh ∈ Π as a stationary policy for the

infinite horizon problem from an optimal non-stationary policy {π∗t }T−1
t=0 for the finite-horizon

problem (15) of length T < ∞, by taking πrh = π∗0, for a given initial state x0 = x. i.e. it

satisfies

Tπrh(V ∗T )(x) = T (V ∗T )(x), x ∈ X (17)

Again the logic of rolling horizon is that the decision maker can approximate her optimal

policy for infinite horizon π∗ with the one for the finite horizon of a sufficient length T < ∞,

π∗0 ∈ {π∗t }
T−1
t=0 . For an arbitrary period t, an individual takes her action based on π∗0. Then the

next period t + 1 comes, instead of choosing π∗1 as her rule of thumb for t + 1, she can choose

π∗0 by rolling her horizon of length T . Such rolling is stationary because the individual rolls

the finite horizon forever thanks to the original setup of infinite horizon. Thus if the rolling

horizon has a sufficient length and discount rate, losing the foresight from T + 1 period is

rather innocuous.

The rolling horizon control approximates the original infinite horizon MDP twice. First, i)

it controls the horizon to finite T . Secondly, ii) it approximates V ∗T of finite horizon model by

simulating V π
T for some policies π ∈ Π. Hence, we can decompose the error between V ∗(optimal

value function of infinite horizon) and V π
T (simulated value function with finite horizon T ) into

two parts;

Theorem 3.1. (Chang et al., 2013, Theorem 5.1) Given V ∈ B(x) such that |V ∗T (x)− V (x)| ≤ ε

for all x ∈ X, consider a policy π ∈ Πs(stationary policy set) such that Tπ(V ) = T (V ). Then,

0 < V ∗(x)− V π(x) ≤ ū

1− β
βT +

2βε

1− β
, x ∈ X (18)

where ū is the upper bound on instant utility5.

5the maximum reward ū is bounded in both finite and infinite horizon cases thanks to the transversality condition.
We can always posit a finite bound ū under admissible action space A(x) for general utility maximization case.
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The first part of the error terms diminishes as the horizon length T increases with a given

discount rate β < 1. The second part mainly depends on how accurately the certain policy

π mimics the optimal policy π∗, denoted as ε. Hence the above theorem approves the rolling

horizon control as a numerical strategy, which holds for a simulation method in general.

3.3 Main Mechanism Description The heart of this adaptive algorithm is at devising a finite,

heuristic subset of policy space Λ ⊂ Π. To understand why, suppose that we have designed a

finite-subset Λ with some finite, heuristic policies. Then our objective is to compute the optimal

value function

V ∗ = max
π∈Λ

V π (19)

The SAMW algorithm carries out its task by generating a sequence of distributions over Λ.

First it starts with equal probability weighting on every policy, a uniform distribution. Then

for each iteration it generates a random sequence to simulate the model and compute the

value function for each policy. Because the optimal value function is the one with maximum

value, the SAMW algorithm updates the policy distribution with V π for all π ∈ Λ by a simple

multiplicative weighting rule. This ‘compute & update’ iteration makes the policy distribution

concentrated on the optimal policies. In the end, the sequence of distribution converges to a

stationary distribution with a proper annealing parameter; It is the completion of the SAMW

algorithm.

Note that a single iteration only requires |Λ| sample paths. So it is independent to the size

of the state space. Each evaluation need not to be done for all states. On-line computation

via simulation is to compute the optimal value function in terms of sample analog of the true

structure. Thus if we could malleate a pertinent policy space, the size of a state space would

be no longer a problem from a running-time complexity perspective. In fact, the running-time

complexity of each iteration of SAMW algorithm isO(|Λ|T ) because it evaluates all polices in Λ

of length T . Of course it requires more iterations as the number of state increases, however it

does not fall into the curse of dimensionality. Because running-time complexity of the SAMW

algorithm does not grow exponentially to the state space size. The main source of the curse is

the tensor product in constructing a state space.
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3.3.1 Sequence of Policy Distribution Recall that the optimal policy in a stochastic econ-

omy is a distribution, not a point. In this sense, what we are looking for is a certain mo-

ment(mean or median) of the distribution, just like a median of impluse response function in

Vector Autoregression analysis. Define Φ as the set of all probability distributions over Λ and

denote φ(π) as the probability for policy π. Through the algorithm, the sequence of distribu-

tions will be concentrated on the optimal policies. Denote i for each simulation iteration, then

a sample path estimate of the value function with a policy π becomes

V π
i (x) =

T−1∑
t=0

βtu(xt, πt(xt))|x0 = x, {wit}T−1
t=0 ) (20)

The probability distribution over Λ will be updated at each iteration i. The iterative updating

rule for the distribution φi+1 from φi and its associated sample path {V π
i } follows

φi+1(π) = φi(π)
γ
V πi
i

Zi
∀π ∈ Λ (21)

where γi > 1, ∀i = 1, . . . , N is a tuning parameter of the algorithm, the normalization factor

Zi is given by Zi =
∑

π∈Λ φ
i(π)γ

V πi
i and the initial distribution φ1 is an uniform distribution

for each π ∈ Λ. The parameter γi takes the same roll as the tempering parameter in the

generic Sequential Monte Carlo(SMC) algorithm. The algorithm sets {γi} as a monotonically

decreasing sequence converging to one. This allows the updating scale γV
π
i

i to vary freely at

the relatively small i. However it cools down the abrupt revision of the distribution as i in-

creases by construction. It helps the sequence of the distribution {φi} converge to a stationary

distribution. This is why the tuning parameter γi is called as annealing parameter.

3.3.2 Convergence Analysis The following lemmas build up the convergence theorem for the

SAMW algorithm. The first lemma below states that the SAMW algorithm with the updating

rule (21) provides the finite-time upper bound for the sample mean of V ∗.

Lemma 3.2. (Chang et al., 2013, Lemma 5.2) For φ ∈ Φ, define

V̄i(φ
i) =

∑
π∈Λ

V π
i φ(π) (22)

Ψπ∗
N =

1

N

N∑
i=1

V π
i (23)
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For γi = γ > 1, i = 1, . . . , N , the sequence of distribution {πi}Ni=1 generated by SAMW with (21)

satisfies (a.s.)

Ψπ∗
N ≤

γ − 1

ln γ

1

N

N∑
i=1

V̄i(φ
i) +

ln |Λ|
N ln γ

(24)

for any optimal policy π∗ ∈ Λ

The lemma has clear interpretation; The sample mean of value function for a certain policy

(23) has an upper bound. Such upper bound is finite-time in the sense that the upper bound

terms are decreasing a.s. in the iteration number N . One can easily see that the two parts

of the upper bound (24) have the limit as lim
γ→1+

γ−1
ln γ = 1 and lim

N→∞
ln |Λ|
N ln γ = 0 for a finite |Λ| and

γ → 1+. This implies that if we can afford a more expensive simulation setup(larger N ), the

upper bound gets closer to the sample mean of V̄ . (24) also suggests that the convergence

depends on the size of restricted policy space and annealing parameter γ as well. In fact,

setting a proper annealing parameter matters for the sequence {φi} to converge, which is the

statement of the following lemma.

Lemma 3.3. (Chang et al., 2013, Lemma 5.3) Define the total variation distance for probability

mass functions p and q by

dN (p, q) =
∑
π∈Λ

|p(π)− q(π)| (25)

Let {ψ(N)} be a decreasing sequence such that ψ(N) > 1 ∀N and lim
N→∞

ψ(N) = 1. For γi =

ψ(N), i = 1, . . . , N + k, k ≥ 1, the sequence of distribution {φi} generated by SAMW with (21)

satisfies (a.s.)

lim
N→∞

dN (φN , φN+k) = 0 (26)

The lemma above regulates a proper annealing parameter as a sequence that monotonically

decreases and converges to one. One example which satisfies the given conditions is γi(N) =

1 +
√

1
N N > 0. A constant parameter γi = γ > 1 ∀i = 1, . . . , N also feasible as well6.

Finally, the previous lemmas constitute the convergence theorem which states that the

upper bound (24) converges to the optimal value function with a proper annealing parameter.
6I verified the convergence in the practice exercise with γi = 2 ∀i = 1, . . . , N .

13



Seokil Kang: SAMW Algorithm for solving a DSGE Model

Theorem 3.4. (Chang et al., 2013, Theorem 5.4) Let {ψ(N)} be a decreasing sequence such that

ψ(N) > 1 ∀N and lim
N→∞

ψ(N) = 1 and lim
N→∞

Nψ(N) =∞. For γi = ψ(N), i = 1, . . . , N + k, k ≥ 1,

the sequence of distribution {φi} generated by SAMW with (21) satisfies (a.s.)

γ − 1

ln γ

1

N

N∑
i=1

V̄i(φ
i) +

ln |Λ|
N ln γ

→ V ∗ (27)

and φi → φ∗ ∈ Φ, where φ∗(π) = 0 for all π such that V π < V ∗.

3.3.3 Approach to Restricting Policy Space One can plainly see that constructing the re-

stricted policy space Λ is the key to the success of the SAMW algorithm. To begin with, Λ must

contain the optimal policy π∗ and minimize the size of the space. There are few implementable

ideas which are not exhaustive. They meet the requisitions above to some degree and can

be combined together immediately. Discretizing the admissible action space A(x) is the first

thing that comes to mind. It is generally applicable analogously to the case of discretizing the

state space. It is a safe approach in the sense that even if the actual optimal policy fails to be

included as one of the grids, its neighborhood certainly be a good approximate. However the

finer the policy grid is, the heavier the computation load becomes.

Adapting the resampling subroutine of SMC type algorithm is another treatment to lighten

Λ. Herbst and Schorfheide (2015) introduces generic SMC algorithm of three main subrou-

tines. A selection step is one of them and it resamples the particles proportional to their

weights. In this way, particles with very low likelihood cannot be drawn so that the distribu-

tion of particles converges to the stationary one effectively. Likewise, the distribution {φi} over

the restricted policy space can take the same role here. With certain iteration periods, we can

drop out some policies in Λ by setting up a threshold weight to prune Λ.

Employing the notion of economics theories is always a compelling way to address the re-

stricted policy space Λ. Notice that the SAMW algorithm is designed for a generic MDP, not

just for a DSGE model of macroeconomics. That is, the method has not yet exploited the inher-

ent features of economics, the equilibrium conditions. Each condition relates optimal polices

to each other as a set. For instance, solving a consumption-saving problem usually boils down

to find the solution of initial period consumption and the intertemporal Euler equation enu-

merates the optimal policy of consumption. This tells that if one posits consumption policy of

initial period, the subsequent policies are one-to-one related through the intertemporal Euler

14



Seokil Kang: SAMW Algorithm for solving a DSGE Model

equation. It dramatically reduces the policy space compared to the case of discretizing action

space of each period.

Finally a technical remark is that the SAMW algorithm is asymptotically efficient(fastest).

It means that the algorithm provides a finite-time upper bound (24) for the sample mean of an

optimal policy π∗ ∈ Λ and the upper bound converges to the optimal value function V ∗ with

O( 1√
N

) of running-time complexity(Chang et al., 2013). So increasing N may hurt the speed

of algorithm for more iteration, but the convergence speed itself gets faster at the same time.

4 Application of SAMW Algorithm

4.1 Example Consider a simple two-period centralized RBC model with a total factor produc-

tivity shock in a production function. Let’s describe the model with discrete stochastic states

s ∈ S in order to emphasize the state-dependency of the model and its solutions.

max
c0,c1(s),k1

u(c0) + β
∑
s∈S

p(s)u(c1(s))

s.t. c0 + k1 = A0f(k0)

c1(s) = A1(s)f(k1) ∀s ∈ S

k0, A0 is given

I assumed a complete depreciation (δ = 1) to derive a closed-form solution by hand. Then the

performance of the methodology studied here can be compared with the analytic solution later.

We can solve the model by Lagrangian method,

L = u(c0) + β
∑
s∈S

p(s)u(c1(s)) + λ0{A0f(k0)− c0 − k1}+
∑
s∈S

λ1(s){A1(s)f(k1)− c1(s)}

deriving the first order conditions with respect to c0, c1(s) and k1,

c1 : uc(c0) = λ0

c1(s) : βp(s)uc(c1(s)) = λ1(s) ∀ s ∈ S

k1 : uc(c0) = β
∑
s∈S

p(s)uc(c1(s))A1(s)f ′(k1)

15
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The intertemporal Euler equation is derived by combining all three conditions above

uc(c1) = β
∑
s∈S

p(s)uc(c1(s))A1(s)f ′(k1) (28)

Let’s further specify the utility and production of the model with u(c) = ln c and f(k) = kα

where α ∈ (0, 1) is the usual parameter of capital in Cobb-Douglas production. The solution

of the model can be derived by plugging the resource constraint of the final period into the

intertemporal Euler equation.

c−1
0 = αβ

∑
s∈S

p(s)A1(s)−1k−α1 A1(s)kα−1
1

= αβ
∑
s∈S

p(s)k−1
1 = αβk−1

1 (29)

We can solve for c1 and k2 by substituting one of them with (29) in the resource constraint of

the beginning period and then the solution for c1(s) easily follows

c∗0 =
1

1 + αβ
A0k

α
0 , k∗1 =

αβ

1 + αβ
A0k

α
0 , c1(s)∗ = A1(s)

(
αβ

1 + αβ
A0k

α
0

)α
∀s ∈ S (30)

The optimal policy is not stationary because the model has a finite horizon.

4.2 Result Table 1 summaries the results and performances of the SAMW algorithm with

various setups applied to the previous exercise. At a glance overall performance of the method

is successful in the sense that majority of simulated means of policy are fairly closed to the true

optimal value(.6528). It is more formal and conventional to check the accuracy of numerical

solution with Euler equation error proposed by Judd (1992). However it requires a model to

have steady state to compute the Euler error in this way. Thus I applied slightly different

version of Euler equation by Den Haan and Marcet (1994) which constructs unit-free error in

terms of normalized consumption7. It has a clear interpretation as well; An Euler error x is

computed in base 10 log, so the error can be measured as 10x units of consumption goods. The

fifth column of Table 1 contains Euler errors. In average more iteration usually gives smaller

error less than 1% unit of consumption8.

7Please refer Appendix B for Euler error computation.
8One notable point is the simulation setup of |Λ| = 10 yields particularly small error only atN = 103 while the rest
of iteration setups gives the largest errors. In fact the Euler error with N = 1114 is -5.0359 and error increases
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The result in Table 1 distinctly emphasizes how important to form the restricted policy

space Λ properly. First, the variance of the policy distribution is decreasing with smaller policy

space size and larger iteration number respectively as predicted by the previous theories. This

is also true for the finite-time upper bound9. Combining these empirical facts with the running

time records, a smaller policy space is desirable in order to increase the simulation number.

At the same time one can assert that investing computational resource too much is inefficient.

Because the simulated mean of optimal policy and value function are already appealing with

relatively small N .

sharply for some N > 1114. However the other simulation setups except |Λ| = 10 showed monotonic decreasing of
Euler errors as I increased N .

9To obtain a valid upper bound, assumption ū < 1
N

to bound o ≤ V π ≤ 1 ∀π ∈ Π is crucial. However, several
exercises report that such restriction can be relaxed. Results of Table 1 are computed with assuming inf

π∈Λ
V π =

−102 which represents sufficiently inferior value. Alternatively, we can apply the Inada condition to exclude the
corner policies π = 0 and π = A0k

α
0 whose value function yield negative infinity. This is a good example of applying

an economics theory to add up a restriction on the policy space.
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Policy Estimate Value Function Estimate

Simulation

Number N

Policy Space

Size |Λ|

Simulated

Mean

Simulated

Variance

Euler

Error

Simulated

Value Function

Finite-time

Upper Bound

Running

Time(sec)

102 5 .709 .0197 -.9337 .494 .6193 .0427

10 .7118 .0587 -.9122 .5208 .6488 .0536

100 .7124 .0578 -.9078 .4378 .8845 .0511

500 .7124 .0578 -.9078 .4389 1.0263 .0455

103 5 .6786 0 -1.2785 .4997 .5687 .0538

10 .6564 .0143 -2.1449 .4918 .5577 .0451

100 .6706 .0171 -1.4414 .4867 .6396 .1204

500 .6706 .0171 -1.4414 .5045 .655 1.0848

2× 104 5 .6786 0 -1.2788 .4974 .5087 1.2229

10 .6034 .0001 -1.012 .4924 .5093 5.3647

100 .6567 .0037 -2.1096 .4917 .5328 68.8457

500 .6567 .0037 -2.1096 .4978 .5166 381.8495

105 5 .6786 0 -1.2788 .4982 .5024 76.7664

10 .6032 0 -1.0099 .4955 .5024 167.8472

100 .6545 .0016 -2.4629 .4999 .5116 1852.172

500 .6545 .0016 -2.4629 .4985 .5116 9131.085
Simulated Mean is computed as the weighted sum of policy with stationary distribution,

∑
π∈Λ φ

N (π)π and

variance is computed in the same fashion. The Euler error is marked in terms of logarithm of base 10. Simulated

Value Function is derived with V̄N (φ) from (22) and Finite-time Upper Bound follows (24). Lastly, Running Time

seconds are recorded based on MATLAB R 2018a. Calibration for model parameters follows; α = 1
3
, β = .95,

k0 = 20, A0 = 1. The true value of the optimal policy is π∗ = .6528 and the value function is V ∗ = .4973

respectively.

Table 1: SAMW Results from Different Simulation Parameters

Figure 1 describes two simulation results with different simulation parameters. The left

panel is the one with N = 100 and |Λ| = 10 and the right one is with N = 100, 000 and

|Λ| = 500. The vertical line depicts the true optimal policy. It clearly shows that the simulation

successfully approximates the optimal policy given that both distributions are concentrating

on the analytic solution as iteration proceeds. The restricted policy space with more policies

shapes smoother kernel of distribution over Λ. Also larger iteration number N produces more

concentrated kernel as well. However they might be achieved at a cost of running-time for a

large-scale model.
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Figure 1: Policy Distributions Generated with Different Simulation Parameters(N = 100, |Λ| =

10 for the left panel and N = 100, 000, |Λ| = 500 for the right panel).
The sequence of distribution {φi} starts from the uniform distribution, the horizontal dotted line. Dashed

lines gradually concentrating are the interim distributions, the darker the latter. The solid line is the stationary

distribution φN . The red vertical dotted line points the true optimal policy.

Note that the early parts of the sequence of distribution over Λ are already clustered. We

can exploit this fast concentration by pruning some policies with lower weight to reduce the

size of policy space.

We can examine the performance of the algorithm by looking at the sequence of weighted

sum of policy
∑

π∈Λ φ
i(π)π and estimated value for iteration i V̄i(φ

i). Figure 2 illustrates the

simulation performance in lines with iteration number. A prospective feature from Figure

2 is that the required iteration number to simulate the optimal policy is practically small

(N < 1, 000) and the convergence is fast and smooth. Another benefit of the algorithm is that

one can arrange it to report its performance at any iteration term.
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Figure 2: Performance of SAMW with N = 1, 000, |Λ| = 10

The black line is the sequence of weighted sum of policy
∑
π∈Λ φ

i(π)π in every 20-period interval. The red

dotted line marks the optimal policy.

5 Conclusion

Based on the literature of computational engineering, this paper has introduced an adaptive

simulation algorithm to solve a DSGE model with a large state space, namely the curse of

dimensionality. This imported method generates a stationary distribution over policy space

which is concentrated on the optimal policy. Instead of minimizing the size of state space,

the algorithm alters its strategy to construct a finite policy space of heuristic policies. To

update the distribution over policy space, the method adopts on-line computation via iterative

simulation with emphasis on rolling-horizon control to foster the speed of algorithm. As a

result, I have delivered that the algorithm achieves theoretical convergence to the optimal

value function and the stationary distribution over policy space is concentrated on the optimal

policy. I also have applied this numerical method to solve the simple two-period RBC model

as a sample exercise. The result shows that the performance of the method is desirable within

feasible number of iterations and size of restricted policy space respectively.

One important scheme for the SAMW algorithm is about how to minimize the policy space

which includes the optimal policy. There could be more than one strategies to take. One

can reduce the policy space from a technical perspective; Discretizing the space and/or adap-
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tively thinning out it through the feedback from the distribution sequence. At the same time,

restricting the policy space with economics theories are strongly encouraged. It is easily im-

plementable and the optimality conditions of a given model can greatly limit the policy space

with sample paths solely dependent to the initial point. These measures can and should be

taken jointly.

This paper marks a first step to solve and estimate the macroeconomics model at the fron-

tier which are large-scaled and complicated in many quarters. Foremost, my anticipation of

the method is to estimate a model with occasionally binding constraints. Yet the natural next

steps are to apply the algorithm to solve a model with more states and periods, possibly with

occasionally binding constraints later on. For those tasks, computational works should be done

through a program faster than MATLAB. JULIA is the promising package to implement the

method.
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A SAMW Algorithm for Simple Two Period RBC

For any policy π ∈ Π the value function for the simple two period RBC is

V π(k0, A0) =E
[ 1∑
t=0

βt ln(Atk
α
t − πt(kt, At))

∣∣∣∣k0, A0

]
=E
[

ln(A0k
α
0 − π0(k0, A0)) + β ln(A1k

α
1 − π1(k1, A1))

∣∣∣∣k0, A0

]
(31)

The optimal (analytic) policy π∗ = {π∗0, π∗1} is already derived as

π∗0(k,A) =
αβ

1 + αβ
Akα, π∗1(k,A) = 0 ∀k,A (32)

and plugging it into the value function above yields

V ∗(k0, A0) =E
[

ln
(
A0k

α
0 −

αβ

1 + αβ
A0k

α
0

)
+ β ln

(
A1

( αβ

1 + αβ
A0k

α
0

)α)∣∣∣∣k0, A0

]
= ln

(
A0k

α
0 −

αβ

1 + αβ
A0k

α
0

)
+ βE[lnA1|k0, A0] + β ln

( αβ

1 + αβ
A0k

α
0

)α (33)

Thus we can solve for the optimal value function given the structure of the stochastic com-

ponent A1. For example, if A follows an AR(1) process with coefficient ρ, the optimal value

function would become V ∗(k0, A0) = ln
(
A0k

α
0 −

αβ
1+αβA0k

α
0

)
+βρA0 +β ln

( αβ
1+αβA0k

α
0

)α. An i.i.d.

case is a special case with ρ = 0.

Next, let’s construct the finite set Λ of ‘heuristic’ policy functions. First we can directly

set π1 = 0 for all π = {π0, π1} in Λ because of the transversality condition. Then the size of

the policy vector boils down to singleton, π = {π0} given π1 = 0. So we can rewrite the value

function with a policy π ∈ Λ in terms of numerical programming as

V π(k0, A0) = ln(A0k
α
0 − π0) + βE[lnA1|k0, A0] + αβ lnπ0 (34)

(34) allows us to draw the big picture for solution strategy. Through the SAMW algorithm

we estimate the value V ∗(k0, A0). Then (34) with the computed value V ∗(k0, A0) on the right-

hand-side becomes an equation with one unknown, π∗0. Therefore as long as the algorithm

successfully approximates the optimal value function, solving for the optimal policy function

follows immediately.
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Now let’s describe the detailed steps for the algorithm. First we need to construct the finite

‘heuristic’ policy space Λ. Because this exercise is extremely simple, we can just make a grid

out of the available saving choice, [0, A0k
α
0 ]. There is one more reason for this discretizing. In

general, a DSGE model does not provide a heuristic policies at initial period from economics

theory perspective. Since the initial period policy is all we have for this exercise, there is no

room for economics theory to roll in. In addition, the numerical example 5.1.4 of Chang et al.

(2013) also constructs the policy space similarly(threshold policies), so we can safely move on

with the grid as our first trial.

Algorithm A.1. SAMW Algorithm for Simple Two Period RBC

0. Scale down the maximum utility, max
c

(u(c)) < 1
T to bound 0 ≤ V π ≤ 1 (a.s.), ∀π ∈ Π

1. Construct the restricted policy space Λ with grid of k elements on [0, A0k
α
0 ]

2. Set {φ1} = 1
|Λ| = 1

k for all π ∈ Λ

3. Draw Ai1 from the given model structure

4. For each π ∈ Λ, compute V π
i (k0, A0) from (34) replacing E[lnA1|k0, A0] with lnAi1|k0, A0

5. update {φi+1} with the given updating rule (21)

6. Iterate step 3 to 5 until i = 1, . . . , N

The above algorithm will generate the stationary distribution {φ∗} on Λ which concentrates

on the optimal policy π∗. Step 0 stands for the updating rule (21) functions properly. This is

a harmless restriction since scaling down the utility function is a positive affine transforma-

tion. It preserves preference ordering uniquely and the solution of a model as well. Several

exercises turn out to be successful without normalizing the scale under the weaker condition,

ū ≤ u(A0k
α
0 ) = .9986. The finite-time upper bound (24) is exceptionally problematic in that the

inequality does not hold. This is due to the condition 0 ≤ V π ≤ 1 (a.s.), ∀π ∈ Π is necessary for

Theorem 3.4 to hold.

B Euler Equation Error

It is conventional to check the accuracy of numerical solution method through calculating Eu-

ler equation error. For example, given the intertemporal Euler equation (28), Judd (1992)
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proposed a unit-free Euler equation error as

EE =
uc(ct)− β

∑
s∈S p(s)uc(ct+1)

{
At+1(s)fk(kt+1) + (1− δ)

}
css

(35)

Where css is the steady state consumption. However, there might be no steady state in a finite

period model and the unit-free error does not have a clear interpretation yet. Den Haan and

Marcet (1994) constructs unit-free error in terms of normalized consumption,

EE =
|c0 − u−1

c (c0)|
u−1
c (c0)

(36)

where u−1
c (c0) is the inverse function of (28) from which the numerical solution calculated with

the right-hand-side

u−1
c (c0) =

[
β
∑
s∈S

p(s)uc(c1(s))
{
A1(s)fk(k1) + (1− δ)

}]−1 (37)

This one has a clear, direct interpretation. For example, if the absolute value of Euler error in

base 10 log is x, then the error can be measured as 10x units of consumption goods. Using the

equilibrium condition, we can compute the Euler equation error as

log10EE = log10 |c0 − u−1
c (c0)| − log10 u

−1
c (c0)

where u−1
c (c0) =

[
β
∑

s∈S p(s)c1(s)−1αA1(s)kα−1
1

]−1. Alternately, one may also use slightly dif-

ferent formula under the same interpretation,

log10EE = log10 |c0 − u−1
c (c0)| − log10 c0
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